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Abstract Multi-scale total variation models for image
restoration are introduced. The models utilize a spatially de-
pendent regularization parameter in order to enhance image
regions containing details while still sufficiently smooth-
ing homogeneous features. The fully automated adjustment
strategy of the regularization parameter is based on local
variance estimators. For robustness reasons, the decision
on the acceptance or rejection of a local parameter value
relies on a confidence interval technique based on the ex-
pected maximal local variance estimate. In order to improve
the performance of the initial algorithm a generalized hier-
archical decomposition of the restored image is used. The
corresponding subproblems are solved by a superlinearly
convergent algorithm based on Fenchel-duality and inexact
semismooth Newton techniques. The paper ends by a report
on numerical tests, a qualitative study of the proposed ad-
justment scheme and a comparison with popular total varia-
tion based restoration methods.
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1 Introduction

During acquisition and transmission images are often blurred
and corrupted by Gaussian noise. In many applications, the
deblurring and denoising of such images are fundamental
for subsequent image processing operations, such as edge
detection, segmentation, object recognition, and many more.

Suppose an image û is a real function defined on a
bounded and piecewise smooth open subset � of R

2 which,
in applications, is typically only available in a degraded form
z with

z = Kû + η. (1.1)

Here, K is a linear and continuous blurring operator from
L2(�) to L2(�), i.e., K ∈ L(L2(�)), which we assume to
be known. The quantity η represents white Gaussian noise
with zero mean and standard deviation σ . The problem of
restoring û from z with unknown η is known to be typically
ill-posed [34]. Hence, stable reconstruction processes usu-
ally rely on regularization techniques which are based on
prior information on û.

In this direction and with the aim of preserving signifi-
cant edges in images, in their seminal work [26] Rudin, Os-
her and Fatemi proposed total variation regularization for
image restoration. In this approach (which we call the ROF-
model in what follows), the recovery of the image û is based
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on solving the constrained minimization problem

minimize J (u) := ∫
�

|Du| over u ∈ BV (�)

subject to
∫
�

Kudx = ∫
�

zdx,

∫
�

|Ku − z|2 dx = σ 2|�|,
(1.2)

where BV (�) denotes the space of functions of bounded
variation, i.e. u ∈ BV (�) iff u ∈ L1(�) and the BV -
seminorm
∫

�

|Du| = sup

{∫

�

u div�v dx : �v ∈ (C∞
0 (�))2,‖�v‖∞ ≤ 1

}

is finite. Here, (C∞
0 (�))2 is the space of vector-valued func-

tions with compact support in �. The space BV (�) en-
dowed with the norm ‖u‖BV (�) = ‖u‖L1(�) + ∫

�
|Du| is a

Banach space; see, e.g., [18]. Further, |�| denotes the vol-
ume or (two-dimensional) measure of the set �.

Usually, the ROF-model (1.2) is solved via the following
optimization problem:

minimize
∫

�

|Du| + λ

2

∫

�

|Ku − z|2 dx

over u ∈ BV (�) (1.3)

for a given λ > 0. Observe in (1.3) that the second con-
straint of (1.2) occurs in a penalized form. Moreover, assum-
ing K · 1 = 1 and

∫
�

|z|2 ≥ σ 2 it is shown in [11] that the
constraint

∫
�

Kudx = ∫
�

zdx is automatically satisfied and
that (1.2) and (1.3) are equivalent provided λ ≥ 0 is chosen
appropriately. In this case, λ represents the Lagrange mul-
tiplier associated with the corresponding constraint in (1.2).
We also note that (1.3) can be equivalently expressed as

minimize
1

2

∫

�

|Ku − z|2 dx + α

∫

�

|Du|
over u ∈ BV (�) (1.4)

where α = 1/λ > 0 is a regularization parameter.
The properties of the TV-term

∫
�

|Du| are responsible
for preserving edges during the reconstruction. This edge
preservation ability is one of the reasons why the ROF-
model is widely accepted as a reliable tool in image restora-
tion. Over the years, various research efforts have been de-
voted to studying, solving and extending the ROF-model;
see, e.g., [10–13, 20, 21, 23, 25, 30, 31] as well as the mono-
graph [34] and the many references therein.

In the optimization problems (1.3) and (1.4), both the La-
grange multiplier λ and the regularization parameter α con-
trol the trade-off between a good fit of z and a smoothness
requirement due to the total variation regularization. In gen-
eral, images are comprised of multiple objects at different
scales. This suggests that different values of λ and α lo-
calized at image features of different scales are desirable

to obtain better restoration results. Roughly speaking, for
small features, large λ, or equivalently small α, leads to lit-
tle smoothing and usually good detail preservation. On the
other hand, for large features, small λ, or large α, leads to
smoothing so that noise is removed considerably. For this
reason and based on (1.3) or (1.4), in [3, 7, 29, 30] multi-
scale total variation (MTV) models with a spatially varying
choice of parameters were considered. The corresponding
multi-scale versions of (1.3) and (1.4) read

minimize
∫

�

|Du| + 1

2

∫

�

λ(x)|Ku − z|2(x) dx

over u ∈ BV (�), (1.5)

and, for an appropriate function α,

minimize
1

2

∫

�

|Ku − z|2dx +
∫

�

α(x)|Du|
over u ∈ BV (�), (1.6)

respectively. In fact, in [30] the notion of a scale of an im-
age feature (that is the ratio of the volume and the perime-
ter) is studied and a regularized gradient descent scheme
for (1.6) is used. While [30] merely studies the influence
of the scale on the choice of α, the subsequent work [29]
proposes an update scheme for α. We note that the over-
all algorithm has to determine several reference parameters
for α such as a scale recognition probe and a reference or
threshold value and is primarily driven by geometric proper-
ties of image features. Moreover, the α-update rule neither
depends on the noise statistics nor on local estimators for
a robust adjustment scheme. The latter aspect is also true
for the method proposed in [7], which uses a pre-segmented
image and considers λ (in the framework of (1.5)) to be a
piecewise constant function with the pieces defined by the
segmentation output. In [7], for the solution of (1.5) with a
piecewise constant λ a regularized gradient descent method
is used. Then the λ-update rule follows an augmented La-
grangian scheme. Finally, in [3] the automated choice of
λ is based on local constraints through local variance esti-
mates. In a discrete setting, the method uses upper bounds
of the expectancy of the maximal local squared residual.
Thus, it relies on probabilistic arguments taking into account
the noise statistics. The solution algorithm is finite dimen-
sional, of proximal point type and converges at a linear rate
with the latter depending on the proximal point regulariza-
tion.

In this paper, we study (1.5) on the continuous, i.e. func-
tion space, level, and we propose a local variance estimator
in order to decide, in a robust way, on the scales of the fea-
tures contained in z. The decision on the acceptance or rejec-
tion of a local λ-value uses a confidence interval technique
based on the expected maximal local variance estimate. The
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latter is rigorously justified by the theory in [19]. Our results
improve the ones, for instance, given in [3], where the up-
per bound on the expected maximal local image residual de-
pends on ln(m)+ω2, where m×m is the discrete image size
and ω2 is the number of pixels in the local window for gener-
ating the local squared residuals. The bound derived in [3] is
typically too loose to yield accurate reconstructions. Instead,
for the numerical results in [3] the heuristic bound (1+ δ)σ 2

with δ ∈ [0,1] is used and the choice of δ is empirical. This
leads to infeasibility considerations for the associated mini-
mization problem through the question of how many pixels
satisfy the local constraints. This latter aspect is addressed in
[15, Sect. 7.1]. Further, our λ-adjustment is fully automated
and, thus, requires no user interaction. In order to accelerate
the performance of the λ-update scheme we generalize the
hierarchical decomposition approach proposed by [32, 33]
to spatially dependent λ. The corresponding subproblems
are solved by a superlinearly convergent algorithm based
on Fenchel-duality and inexact semismooth Newton tech-
niques. The latter extends earlier work in [21]. We note that,
based on the relationship between (1.5) and (1.6), our sub-
problem solver can also be adapted easily to handle (1.6), as
well. Further, we mention that besides our analysis of the lo-
calized constraints in the original function space context of
(1.5), our solver strategy differs significantly from previous
work such as, e.g., [3], where Uzawa’s method is combined
with the iterative scheme of [10] yielding a linearly conver-
gent scheme only. In particular, the convergence of Uzawa’s
method is extremely slow with a rate of linear convergence
rather close to 1. As noted above, our TV-solver converges
locally superlinearly and when combined with the hierar-
chical decomposition scheme of [32] it converges extremely
fast in practice.

The outline of the rest of the paper is as follows. In Sect. 2
we study the existence of a solution of a version of (1.2) with
localized constraints and relate this problem to (1.5). More-
over, a first order optimality characterization is derived. In
Sect. 3 we describe our new spatially adapted parameter se-
lection in detail and discuss the statistics of the expected
value of the maximal local residual estimates. The following
Sect. 4 extends the algorithm in [33] to the case where λ is
spatially dependent. Utilizing our new spatially adapted pa-
rameter selection rule, in Sect. 5 we introduce a primal-dual
algorithm for solving the MTV-problem. Section 6 gives nu-
merical results to demonstrate the performance of the new
method. Moreover, we compare our method with several
other popular methods. The numerical results indicate that
our method has the potential to outperform the other ap-
proaches in both noise removal and detail preservation. Fi-
nally, conclusions are drawn in Sect. 7.

2 Spatially Adapted Regularization

Similar to [3, 17] we consider smoothed image residuals,
which should ideally only contain noise after restoration, for
extracting information on the scale that we then use for au-
tomatically adjusting λ in (1.5). Assume that w is a normal-
ized filter, i.e. w ∈ L∞(� × �), w ≥ 0 on � × � with
∫

�

∫

�

w(x, y) dy dx = 1 and

(2.1)∫

�

∫

�

w(x, y)φ2(y) dy dx ≥ ε‖φ‖2
L2(�)

∀φ ∈ L2(�)

for some ε > 0 (independent of φ). The second condition
in (2.1) is required in the proof of the radial unboundedness
result of Proposition 1. By S(u) we denote the w-smoothed
version of the residual which is

S(u)(x) :=
∫

�

w(x, y)(Ku − z)2(y) dy. (2.2)

Note that S(u)(x) may be interpreted as a local variance.
Observe that since (Ku− z)2 ∈ L1(�) and w ∈ L∞(�×�)

we have S(u) ∈ L∞(�). Moreover, it can readily be shown
that S(·) is continuous as a mapping from L2(�) to L∞(�).
The smoothed residual is now used to formulate a version of
the ROF-model (1.2) with local constraints (instead of the
original global constraint):

minimize J (u) over u ∈ BV (�)

subject to S(u) − σ 2 ≤ 0 a.e. in �.
(2.3)

Here and below ‘a.e.’ stands for ‘almost everywhere’. For
later use we define the feasible set

U = {u ∈ BV (�) : S(u) ≤ σ 2 a.e. in �}. (2.4)

It is straightforward to show that U is closed and convex.

2.1 Existence of a Solution

For the existence of a solution to (2.3) we start by adapting a
result due to [2]. We provide a proof for the sake of keeping
the paper self-contained.

Proposition 1 Assume that K does not annihilate constant
functions, i.e. Kχ� 	= 0, where χ�(x) = 1 for x ∈ �. Then
‖u‖BV → +∞ implies J (u) → +∞ with

J (u) = J (u) +
∫

�

∫

�

w(x, y)(Ku − z)2(y) dy dx.

Proof Any u ∈ BV (�) can be decomposed according to

u = t + v with t =
(∫

�
udx

|�|
)

χ� and
∫

�

v dx = 0.

(2.5)
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Hence, we obtain

‖u‖BV ≤ ‖t‖BV + ‖v‖BV

=
∫

�

|t |dx + J (t) +
∫

�

|v|dx + J (v)

≤ ‖t‖L1(�) + ‖v‖L1(�) + J (v)

≤ ‖t‖L1(�) + C2J (v)

for some C2 > 0. Recalling that � is bounded with a piece-
wise smooth boundary, note here that we used the Sobolev
inequality [18, p. 24] ‖v‖L2(�) ≤ C1J (v), with C1 > 0, to
obtain the last inequality above. Since K does not annihi-
late constants, there exists C3 > 0 independent of t such that
‖Kt‖L2(�) ≥ C3‖t‖L1(�). Then, by (2.1) we get

J (u) ≥ J (v) + ε‖Kt + Kv − z‖2
L2(�)

≥ J (v) + ε‖Kt‖L2(�)(‖Kt‖L2(�)

− 2‖Kv − z‖L2(�)).

Since ‖Kv − z‖L2(�) ≤ ‖K‖‖v‖L2(�) + ‖z‖L2(�) ≤
C1‖K‖J (v) + ‖z‖L2(�) we have

J (u) ≥ J (v) + ε‖Kt‖L2(�)

(
C3‖t‖L1(�)

− 2(‖K‖C1J (v) + ‖z‖L2(�))
)
. (2.6)

If C3‖t‖L1(�) − 2(‖K‖C1J (v) + ‖z‖L2(�)) ≥ 1, then
J (u) ≥ J (v) + ε‖Kt‖L2(�) and

‖t‖L1(�) ≤ 1

C4
J (u) (2.7)

for C4 = εC3 > 0, and further

J (v) ≤ J (u). (2.8)

Then, (2.7) and (2.8) yield

‖u‖BV ≤
(

1

C4
+ C2

)

J (u). (2.9)

On the other hand, if C3‖t‖L1(�) − 2(‖K‖C1J (v) +
‖z‖L2(�)) < 1, then

‖t‖L1(�) <
1 + 2(‖K‖C1J (v) + ‖z‖L2(�))

C3

and hence

‖u‖BV − 1 + 2‖z‖L2(�)

C3
≤

(
2‖K‖C1

C3
+ C2

)

J (u). (2.10)

Thus, (2.9) and (2.10) yield the assertion. �

Based on Proposition 1 it is immediate to argue existence
of a solution to (2.3).

Theorem 2 Assume that K ∈ L(L2(�)) does not annihilate
constant functions. Then problem (2.3) admits a solution.

Proof We first note that J is bounded from below and
choose an infimal sequence {un} ⊂ U . Due to Proposition 1
{un} is bounded in BV (�). Hence, there exists a subse-
quence {unk

} which converges weakly in L2(�) to some
ũ ∈ L2(�), and {Dunk

} converges weakly as a measure to
Dũ [6, p. 47]. By the weak lower semicontinuity of J we
obtain that

J (ũ) ≤ lim inf
k→∞ J (unk

) = inf
u∈U

J (u). (2.11)

Since K is a continuous linear operator, {Kunk
} converges

weakly to Kũ. Moreover, since U is closed and convex, we
have S(ũ) ≤ σ 2 a.e. in �. �

Next we establish a uniqueness result. For this purpose
we require the following property of the filter w.

Assumption 3 Let u1, u2 ∈ BV (�) denote two solutions
of (2.3) with u1 	= u2. If there exist δ > 0 and �δ ⊂ � with
|�δ| > 0 such that

(
1

2
K(u1 + u2) − z

)2

≤ 1

2

(
(Ku1 − z)2 + (Ku2 − z)2

)
− δ a.e. in �δ

then there exists εδ > 0 such that

∫

�

w(x, y)

(
1

2
K(u1 + u2) − z

)2

(y) dy ≤ σ 2 − εδ

for almost all x ∈ �. (2.12)

We note that Assumption 3 is satisfied for the mean filter

w(x,y) =
{

1
w2

ε
if ‖y − x‖∞ ≤ ω

2 ,

ε0 else,

where x ∈ � is fixed, ω > 0 sufficiently small is the essen-
tial width of the filter window, 0 < ε0 � min(1, 1

w2
ε
) and

wε such that
∫
�

∫
�

w(x, y) dy dx = 1. In this case we have
εδ = ε0δ|�δ|. It can also be shown that Assumption 3 holds
true for the Gaussian filter.

The following uniqueness result generalizes a finite di-
mensional version due to [3].

Theorem 4 Let the assumptions of Theorem 2 hold true and
suppose K1 = 1. In addition we suppose that Assumption 3
is satisfied and that

inf
c∈R

∫

�

w(x, y)(c − z)2(y) dy > σ 2 a.e. in �. (2.13)

Then, for every solution ũ of (2.3) Kũ has the same value.
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Proof Let u1, u2 ∈ BV (�) denote two solutions with u1 	=
u2. Define ū = 1

2 (u1 + u2). By convexity we have

(Kū − z)2 ≤ 1

2

(
(Ku1 − z)2 + (Ku2 − z)2

)

If the inequality holds as an equality a.e. in �, then Ku1 =
Ku2 a.e. in �; otherwise there exist a δ > 0 and a set
�δ ⊂ � of positive measure such that (2.12) holds true for
a suitable εδ > 0. Define us := sū for s ∈ [0,1]. Then, for
s close to 1, we have us ∈ U and J (us) = sJ (ū) < J (ū)

for all s ∈ [0,1), unless J (ū) = 0. This implies ū ≡ c̄, and
therefore Kū = c̄ for some c̄ ∈ R. This, however, is impossi-
ble since infc∈R

∫
�

w(x, y)(c − z)2(y)dy > σ 2 a.e. in � by
assumption. Hence, Ku1 = Ku2 a.e. in �. �

Note that (2.13) is almost surely satisfied when z is the
addition of some regular (non-constant) image and a white
random field with variance σ 2.

2.2 First-order Optimality Characterization

We continue by characterizing a solution of (2.3) and relate
the problem to (1.5). For this purpose we define the penalty
problem

minimize Fγ (u) := J (u) + γ

2

∫

�

max(S(u) − σ 2,0)2 dx

over u ∈ BV (�). (2.14)

Here, γ > 0 denotes a penalty parameter.

Proposition 5 Let the assumptions of Theorem 2 be satis-
fied. Then problem (2.14) admits a solution uγ ∈ BV (�) for
every γ > 0. Moreover, for γ → +∞ {uγ } converges along
a subsequence weakly in L2(�) to a solution of (2.3).

Proof Note that due to the continuity and (pointwise)
convexity of S : L2(�) → L∞(�) as well as max(·,0) :
L2(�) → L2(�) and the weak lower semicontinuity of
J (u) according to [5], Fγ : BV (�) → R is weakly lower
semicontinuous. Let {un} ⊂ BV (�) denote an infimal se-
quence, and let ũ be a solution of (2.3). Then, for all suffi-
ciently large n we have Fγ (un) ≤ Fγ (ũ) + 1 = J (ũ) + 1.
Since S(u) ≥ 0 a.e. in � for any u ∈ BV (�), there ex-
ists a constant C (independent of n and γ ) such that
‖S(un)‖L2(�) ≤ C. By Proposition 1 {un} is bounded in
BV (�). Now similar arguments as in the proof of Theo-
rem 2 yield the existence of a solution uγ ∈ BV (�).

Concerning the convergence result we first note that sim-
ilarly to the first part of this proof one argues the bounded-
ness of {uγ } in BV (�). Then by lower semicontinuity we
have

J (ũγ ) ≤ lim inf
γ→+∞ Fγ (uγ ) ≤ J (ũ) = inf

u∈U
J (u),

where ũγ is a weak limit of a subsequence of {uγ } in L2(�)

(which we still denote by {uγ }). It remains to show that ũγ ∈
U . For this we observe that for all γ > 0

γ

2

∫

�

max(S(uγ ) − σ 2,0)2 dx ≤ J (ũ).

As a consequence, we obtain

∫

�

max(S(uγ ) − σ 2,0)2 dx → 0 as γ → ∞

and by the continuity of K , weak lower semicontinuity and
Fatou’s Lemma S(ũγ ) ≤ σ 2 a.e. in �. �

Observe that the arguments of the previous proof yield

‖max(S(uγ ) − σ 2,0)‖L2(�) = O(1/
√

γ ), (2.15)

where O(an)/an → 0 for a sequence {an} ⊂ R+ with
an → 0.

For our subsequent results, for arbitrarily fixed γ > 0 we
define

λ◦
γ := γ max(S(uγ ) − σ 2,0), (2.16)

λγ :=
∫

�

w(x, y)λ◦
γ (x) dx. (2.17)

Note that λγ is related to the Fréchet-derivative of the
penalty term in (2.14). This derivative at uγ applied to some
direction v ∈ L2(�) is given by

∫

�

[2(Kuγ − z)Kv](y)

∫

�

γ max(S(uγ )

− σ 2,0)(x)w(x, y) dx dy

=
∫

�

[2(Kuγ − z)Kv](y)λγ (y) dy.

Here we use the Fréchet-derivative S′(·) of S(·) : L2(�) →
L2(�) with its action on v ∈ L2(�) given by

S′(u)v = 2
∫

�

w(x, y)[(Ku − z)Kv](y) dy.

Now we are ready to state the first-order optimality char-
acterization of a solution to (2.3).

Theorem 6 Let the assumptions of Theorem 2 hold, and let
ũ denote a weak limit point of {uγn} as γn → +∞. More-
over, we assume that ‖Kuγn‖L2(�) → ‖Kũ‖L2(�) as γn →
+∞ and that there exists C > 0 such that γn‖max(S(uγn)−
σ 2,0)‖L1(�) ≤ C for all n ∈ N. Then there exist λ̃ ∈ L∞(�),

a bounded Borel measure λ̃◦ and a subsequence {γnk
} such

that the following properties hold true:
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(i)
∫
�

λγnk
f dx → ∫

�
λ̃f dx for all f ∈ L1(�) and λ̃ ≥ 0

a.e. in �.
(ii) There exists j (ũ) ∈ ∂J (ũ) such that

〈j (ũ), v〉BV (�)∗,BV (�) + 2
∫

�

(K∗λ̃(Kũ − z))v dx = 0

for all v ∈ BV (�).

(iii)
∫
�

ϕλ◦
γnk

dx → ∫
�

ϕdλ̃◦ for all ϕ ∈ C(�̄), λ̃◦ ≥ 0 and
∫
�

λ◦
γn

(S(uγn) − σ 2) dx → 0.

Proof We start by proving (i). First note that due to the
properties of S, (2.17) and w ∈ L∞(� × �), we have
λγn ∈ L∞(�). Thus,

∫
�

λγnf dx is well-defined for all
f ∈ L1(�). Under our assumptions there exists a constant
C′ > 0 independent of γn such that

‖λγn‖L∞(�) ≤ γn‖w‖L∞(�×�)‖max(S(uγn) − σ 2,0)‖L1(�)

≤ C′.

Now the first part of (i) follows from the weak∗ sequential
compactness of the closed unit ball in L∞(�) (according
to the Banach-Alaoglu theorem; see [27, p. 66]). The non-
negativity is an immediate consequence of the definition of
λγ .

Concerning (ii) we recall that from the proof of Proposi-
tion 5 we get the boundedness of {uγn} in BV (�). From this
and the continuity of J (·) at uγn , we infer the uniform (w.r.t.
γn) boundedness of ∂J (uγn). Now note that the first order
(necessary and sufficient) optimality condition for (2.14) is
given by

0 ∈ ∂J (uγn) + γnS
′(uγn)

∗ max(S(uγn) − σ 2,0), (2.18)

where S′(·)∗ denotes the adjoint operator of S′(·). From
the boundedness of {uγn} in BV (�) and of {∂J (uγn)} in
BV (�)∗ we infer

γn‖S′(uγn)
∗ max(S(uγn) − σ 2,0)‖BV (�)∗ ≤ C′′ (2.19)

for some constant C′′ > 0 independent of γn. Moreover, for
v ∈ BV (�) we have

γnk

2
〈S′(uγnk

)∗ max(S(uγnk
) − σ 2,0), v〉BV (�)∗,BV (�)

=
∫

�

(Kuγnk
− z)(Kv)λγnk

dy

=
∫

�

(Kuγnk
− Kũ)(Kv)λγnk

dy

+
∫

�

(Kũ − z)(Kv)(λγnk
− λ̃) dy

+
∫

�

(Kũ − z)(Kv)λ̃ dy

→
∫

�

(Kũ − z)(Kv)λ̃ dy as k → +∞,

where, without loss of generality, ũ ∈ BV (�) denotes the
weak limit of {uγnk

} in L2(�). This proves (ii).
Finally, from the boundedness assumption of this theo-

rem, (2.16) and [5, Cor. 2.4.3] we obtain the first result in
(iii). The non-negativity of λ̃◦ is an immediate consequence
of the definition of λ◦

γ . Then, based on

∣
∣
∣
∣

∫

�

λ◦
γn

(
S(uγn)−σ 2)dx

∣
∣
∣
∣ = γ

∥
∥max(S(uγn)−σ 2,0)

∥
∥2

L2(�)
,

the third assertion in (iii),
∫
�

λ◦
γn

(S(uγn) − σ 2) dx → 0, fol-
lows from (2.15). �

We note that if (2.15) holds true with O(1/
√

γ ) replaced
by O(1/γ ), then {λ◦

γn
}, with {γn} as in Theorem 6, is uni-

formly bounded in L2(�). As a consequence, λ̃◦ ∈ L2(�)

is the weak limit of a subsequence {λ◦
γnk

}. In this case the
system of Theorem 6(iii) becomes

λ̃◦ ≥ 0 a.e. in �, S(ũ) ≤ σ 2 a.e. in �,

lim
n→∞

∫

�

λ◦
γn

(S(uγn) − σ 2) dx = 0.

If the last relation above holds as
∫
�

λ̃◦(S(ũ) − σ 2) dx = 0,
then we may equivalently write

λ̃◦ ≥ 0 a.e. in �, λ̃◦ = λ̃◦ + ρ max(S(ũ) − σ 2,0)

(2.20)

for arbitrary and fixed ρ > 0.
Setting λ = 2λ̃ in (1.5) we find that the first order opti-

mality condition for (1.5) coincides with Theorem 6(ii). This
relates the constrained problem (2.3) and the unconstrained
problem (1.5) formally. Note that for the existence proof for
(1.5) we need λ̃ ≥ ε̃ > 0 a.e. in �. A rigorous investigation
when (2.3) admits the existence of such a multiplier λ̃, how-
ever, goes beyond the scope of the present paper.

3 Spatial Adaptation by Local Variance Estimators

We suppose that the variance σ 2 of the Gaussian noise is at
our disposal. In practice the variance can be estimated, e.g.,
from homogeneous parts; see [4, 16] for various estimation
techniques. While the solution of the ROF-model satisfies
the global constraint

∫

�

|Ku − z|2 dx = σ 2|�|, (3.1)
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Fig. 1 Local variance estimator
Sω with different window sizes:
(a) Original image, (b) Noisy
image (σ = 0.2,
K = identity matrix), (c)
Restored image obtained from
solving (1.3) with λ = 2.4, (d)
Residual, (e) S5, (f) S7, (g) S9

(1.5) represents a localized version by allowing λ = λ(x).
In order to enhance image details while preserving homoge-
neous regions, the choice of λ must be based on local im-
age features. Hence, we search for a reconstruction where
the variance of the residual is close to the noise variance in
both the detail regions and the homogeneous parts. In order
to achieve this goal we introduce local variance estimators
for an automated adaptive choice of λ. Our adjustment rule
makes use of the constraint in (2.3).

3.1 Local Variance Estimator

Our subsequent considerations are exemplarily based on the
mean filter introduced earlier. We mention, however, that the
Wiener filter employed in [17] or the Gaussian filter of the
non-local means approach [9] may be used as well. More-
over, from now on we proceed in discrete terms, but, for the
sake of simplicity, we keep the notations from the continu-
ous context. We assume that the discrete image domain �

contains m × m pixels. Let r = z − Ku denote the discrete
residual image with r , z, u ∈ R

m2
and K ∈ R

m2×m2
. For

convenience, for the remainder of this section we reshape
r , z, and Ku as m × m-matrices. We also note that in the
discrete mean filter we may choose ε0 = 0 and ω is an odd
integer as the discrete version of Assumption 3 still holds
true in this case. Further, let �ω

i,j denote the set of pixel-
coordinates in a ω-by-ω window centered at (i, j) (with a
symmetric extension at the boundary), i.e.

�ω
i,j =

{

(s + i, t + j) : −ω − 1

2
≤ s, t ≤ ω − 1

2

}

.

Then we apply the mean filter to the residual and obtain

Sω
i,j := 1

ω2

∑

(s,t)∈�ω
i,j

(
zs,t − (Ku)s,t

)2

= 1

ω2

∑

(s,t)∈�ω
i,j

(
rs,t

)2
. (3.2)

Based on the current estimate λ and the pertinent reconstruc-
tion u, Sω is a local variance estimator, which allows us to
decide on the amount of details contained in the window
around (i, j). For illustration purposes, Fig. 1 depicts Sω for
ω = 5,7,9, respectively; see the plots (e)–(g). The corre-
sponding reconstruction u comes from solving the discrete
version of (1.3) with λ = 2.4 by the primal-dual algorithm
introduced in [21]. With this small λ, the restored image u is
over-smoothed, and the residual contains noise and details.
Observe that Sω is typically large (indicated in light gray) in
image regions which contain fine scale details. Moreover we
find that for fixed contrast, Sω is the larger the finer (smaller)
the scale is. In order to distinguish a region containing just
noise from a region containing details we propose to employ
the confidence interval technique well-known from statistics
[22, 24].

3.2 Upper Bound for the Local Variance

In the discrete setting, η (see (1.1)) can be regarded as an
array of independent normally distributed random variables
with zero mean and variance σ 2. Then the random variable

T ω
i,j = 1

σ 2

∑

(s,t)∈�ω
i,j

(ηs,t )
2

has the χ2-distribution with ω2 degrees of freedom, i.e.
T ω

i,j ∼ χ2
ω2 . If u = û satisfies η = z − Kû, then

Sω
i,j = 1

ω2

∑

(s,t)∈�ω
i,j

(zs,t − (Kû)s,t )
2

= 1

ω2

∑

(s,t)∈�ω
i,j

(ηs,t )
2 = σ 2

ω2
T ω

i,j .
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If u is an over-smoothed restored image, then the residual
z − Ku contains details, and we expect

Sω
i,j = 1

ω2

∑

(s,t)∈�ω
i,j

(zs,t − (Ku)s,t )
2

>
1

ω2

∑

(s,t)∈�ω
i,j

(ηs,t )
2 = σ 2

ω2
T ω

i,j .

Therefore, we search for a bound B such that Sω
i,j > B for

some pixel (i, j) implies that in the residual there are some
details left in the neighborhood of this pixel. For ease of
notation, below we write T ω

k := T ω
i,j with k = i + (m − 1)j

for i, j = 1, . . . ,m.
Given m×m, the total number of pixels in the image, we

propose to consider the expected maximum of the m2 ran-

dom variables σ 2

ω2 T ω
k , k = 1, . . . ,m2, where—as before—

each T ω
k has the χ2-distribution with ω2 degrees of freedom.

The bound B depends on the size of the image (m × m)
and on the size of the window (ω × ω). Thus, we write
Bω,m = B(ω,m) with

Bω,m := σ 2

ω2
E

(
max

k=1,...,m2
T ω

k

)
, (3.3)

where E represents the expected value of a random variable.

3.2.1 Distribution of the Maximum of N Random Variables

In order to compute the expected value of the maximum of
the N = m2 random variables T ω

k , k = 1, . . . ,N , we use
[19], disregarding certain dependencies. For the moment we
drop the superscript ω. Let f be the χ2-distribution with ω2

degrees of freedom, and let F denote its cumulative distrib-
ution function, i.e.

F(T ) =
∫ T

−∞
f(z) dz. (3.4)

The maximum value of N observations distributed along f is
denoted by Tmax. Our goal is to describe the distribution fmax

of this maximum value. According to [19] this distribution
is given by

fmax[y(Tmax)] = N f(Tdom)e−y(Tmax)−e−y(Tmax)

, (3.5)

where y(T ) = N f(Tdom)(T − Tdom) is the standardization of
the variable T . Here, Tdom is the so-called dominant value,
which is such that

F(Tdom) = 1 − 1

N
. (3.6)

From (3.5), the cumulative distribution function Fmax of
Tmax reads

Fmax(T ) = P(Tmax ≤ T ) = e−e−y(T )

. (3.7)

The expected value and the standard deviation of the stan-
dardized variable y(Tmax) are

E(y(Tmax)) = κ and d(y(Tmax)) = π√
6
, (3.8)

respectively, where κ = 0.577215 is the Euler-Mascheroni
constant; for further details see [19]. According to the trans-
formation of Tmax we have that its expected value and its
standard deviation are

E(Tmax) = Tdom + κ

βmax
and

(3.9)
d(Tmax) = π

βmax
√

6
with βmax = N fmax(Tdom).

3.2.2 Confidence Interval

We observe that the size of the image influences the expected
maximum value given by (3.9). In fact, if N1 ≤ N2, then

E(T 1
max) ≤ E(T 2

max),

where T i
max corresponds to the maximum of Ni observa-

tions, i = 1,2. In view of our above findings, the follow-
ing two choices for the bound Bω,m are natural: Either
we take the expected value of the random variables T ω

k ,
k = 1, . . . ,N , which corresponds to (3.3) and our earlier dis-
cussion, or we re-define Bω,m by adding the corresponding
standard deviation d(Tmax) to the first choice. The latter op-
tion is taken in (3.12) below.

The confidence level of these bounds is given by the cu-
mulative distribution (3.7). The probability that the maxi-
mum value is below or equal to E(Tmax) is

P(Tmax ≤ E(Tmax)) = e−e−y(E(Tmax)) = e−e−κ = 0.57037

(3.10)

and that the maximum value is not larger than E(Tmax) +
d(Tmax) is

P(Tmax ≤ E(Tmax) + d(Tmax)) = e−e−y(E(Tmax)+d(Tmax))

= e−e
−κ− π√

6 = 0.85580,

(3.11)

since

y(E(Tmax) + d(Tmax)) = N f(Tdom)

(

Tdom + κ

N f(Tdom)

+ π

N f(Tdom)
√

6
− Tdom

)

= κ + π√
6
.
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Fig. 2 Different values of τ for different window sizes ω and image
sizes N

Observe that (3.10) specifies the probability that all of the
smoothed image residuals T ω

k , k = 1, . . . ,m2, satisfy the
constraints. A similar reasoning holds true for (3.11), which
yields a higher probability as the upper bound is relaxed.
Then, even if there is only noise left in the residual, using the
first upper bound the constraints are satisfied by all T ω

k only
with a probability of 0.57. In the reconstruction process, this
leads to difficulties in distinguishing whether the violation
of constraints is due to noise or image details still contained
in the local residuals. Therefore, subsequently we choose the
second bound described in (3.11) above yielding

Bω,m := σ 2

ω2 (E(Tmax) + d(Tmax)) . (3.12)

3.2.3 Window Size

The previous results are valid for any window size ω. We
write

Bω,m = τσ 2, (3.13)

then, from (3.12), we obtain

τ = 1

ω2 (E(Tmax) + d(Tmax)) . (3.14)

In Fig. 2 we show the dependence of τ on the window size ω

and the image size N . We note that τ is always larger than 1,
i.e. Bω,m is always larger than σ 2. Our choice of ω should
avoid the following unfavorable cases: (i) Bω,m � σ 2. In
this case there is a relatively large chance that regions with
details are not recognized properly. (ii) Bω,m ≈ σ 2. In this
case there is a likeliness that a region is identified which
seemingly contains details although this is not true. In addi-
tion, upon inspection of the graphs we find that the larger the
window size is, the tighter the bound on the local variance

estimator becomes. Moreover, in view of (2.17), increasing
the window size reduces the “sharpness” of λ. Conversely,
a small window size yields a rather large bound and yields
a λ, which better reflects the location of image details. Fur-
ther, from Fig. 2 we observe that the upper bound depends
on the window size relatively to the image size. In our nu-
merical experiments in Sect. 6 we also study the effect of the
window size on the reconstruction quality; see, e.g., Fig. 11.

3.3 Selection of λ

We use the confidence interval technique for Sω to reduce
the effect of noise on the local variance estimators for de-
tecting image details.

Recall that Sω
i,j represents the mean value of the squared

residual in a given window �ω
i,j . Ideally, the residual should

contain noise only. In this case

Sω
i,j ∈ [

0,Bω,m
)
, (3.15)

where Bω,m is given by (3.12). On the other hand, if (3.15)
is not satisfied, we suppose that this is due to image details
contained in the residual image in �ω

i,j . This motivates the
introduction of the following modified local variance esti-
mator S̃ω defined by

S̃ω
i,j :=

{
Sω

i,j if Sω
i,j ≥ Bω,m,

σ 2 otherwise.
(3.16)

In the second row of Fig. 3, the quantity S̃ω is depicted,
which is based on the noisy image and the restored image
shown in Fig. 1 (b) and (c), respectively. In order to under-
stand the performance of Bω,m better according to (3.13)
and (3.14) we compare this bound with the upper bound
proposed in the recent work [15]. In that paper, the authors
consider local constraints similar to ours in (2.3). We should
mention that in [15] a bilateral bound is determined based
on the constraint which is used for defining a stopping con-
dition rather than for updating the regularization parameter
as in our case. Here, we only choose the upper bound of
[15] for a comparison with our bound in order to show that
for distinguishing the detail regions from other features in
the residual the bound Bω,m as defined in (3.12) is more
suitable. Referring to [15], the value of (1 + α)0.64σ 2, with
α > 0 such that (1 + α)0.64 < 1, is used as an upper bound
for localized variance estimates (instead of σ 2). It is moti-
vated by the observation that in order to avoid loss of tex-
ture in images one should accept a higher total variation.
The latter can be achieved by employing a lower bound to
the true variance, thus yielding (1 + α)0.64 < 1. Based on
[15], there exists the relation P(Sω ≤ (1 + α)0.64σ 2) =
P(χ2(ω2) ≤ (1 + α)ω2) = γ (ω2

2 ,
(1+α)ω2

2 )/�(ω2

2 ), where
γ (a, x) = ∫ x

0 ta−1e−t dt is the incomplete gamma function



J Math Imaging Vis (2011) 40: 82–104 91

Fig. 3 The modified local
variance estimator S̃ for
different window sizes with
different upper bounds (row 1:
Bω,m = 0.64(1 + α)σ 2 defined
as in [15] with α = 0.227, 0.165
and 0.129, respectively; row 2:
Bω,m = τσ 2 defined as in (3.13)
and (3.14)): (a) S̃5, (b) S̃7,
(c) S̃9

and �(a) = ∫ ∞
0 ta−1e−t dt . It provides the expected frac-

tion of the total number of image pixels satisfying the local
constraints. In order to compare with our upper bound, we
set P(Sω ≤ (1 +α)0.64σ 2) = 0.8, and calculate the value α

with ω = 5, 7, 9, respectively. Observe that a probability of
0.8 for the window sizes under investigation keeps α in the
range where (1 + α)0.64 < 1. We note that an upper bound
which is too tight—such as the one in [15] which is even
less than σ 2—produces a modified local variance estimator
which appears strongly influenced by noise; see the first row
in Fig. 3 and compare it with the second row in Fig. 3. In
view of our update strategy of λ which we discuss below,
the bound of [15] would yield too large local λ-values and,
hence, too little regularization in homogeneous features. In
such image regions, the noise removal would be adversely
affected. Our upper bound is adjusted automatically based
on the window size, the image size and the statistical proper-
ties of the maximum value of the variance estimators. Thus,
compared to Sω (see Fig. 1), the influence of noise is sig-
nificantly reduced and S̃ω

i,j is more adaptive, i.e., it is larger
than the noise level primarily in image regions containing
details; compare the second row of Fig. 3.

For adapting λ algorithmically we proceed as follows.
Initially we assign a small positive value to λ, in order to
obtain an over-smoothed restored image and to keep most
details in the residual. Then we restore the image iteratively
by increasing λ according to the following rule: Let λ̃k de-
note a given discrete approximation of λ̃◦ in (2.20). Then we
set

(λ̃k+1)i,j := (λ̃k)i,j + ρ max((S̃ω
k )i,j − σ 2,0)

= (λ̃k)i,j + ρ((S̃ω
k )i,j − σ 2), (3.17a)

(λk+1)i,j = 1

ω2

∑

(s,t)∈�ω
i,j

(λ̃k+1)s,t , (3.17b)

where ρ > 0. Observe that (3.17a) is motivated by a discrete
version of (2.20) and (3.17b) by (2.17). Here and below, S̃ω

k

is the modified local variance estimator obtained from uk .
Based on the definition in (3.16), S̃ω is always larger than
σ 2, which leads to the rightmost consequence in (3.17a). We
set ρ = ρk = ||λ̃k||∞/σ in order to keep the new λ̃k+1 at the
same scale as λ̃k .

Based on the iterative update of λ in (3.17), we have the
following basic multi-scale total variation algorithm.

Basic MTV-Algorithm.
1: Initialize λ0 := λ̃0 ∈ R

m×m+ and set k := 0.
2: Let uk denote the solution of the discrete version of the

minimization problem (1.5) with discrete λ = 2λk .
3: Update λk+1 based on uk and (3.17).
4: Stop, or set k := k + 1 and return to step 2.

Our numerical experience indicates that this basic MTV-
algorithm exhibits a rather slow adjustment of λ, which,
in particular for rather small initial λ0, leads to an unac-
ceptably large number of iterations; compare Table 1. In
order to remedy this effect, in the next section we extend
the notion of hierarchical decompositions in image process-
ing (see [32, 33]) to spatially dependent regularization and
combine it with our basic MTV-framework. This results in
a tremendous acceleration of the basic MTV-algorithm and
an enhancement in the reconstruction of image details. As
a consequence, the associated algorithm (SA-TV, below) fa-
vorably competes with several other image restoration tech-
niques; see Sect. 6 for the results and a comparison.

4 A Hierarchical Decomposition with Spatially
Dependent λ

In [32, 33] Tadmor, Nezzar and Vese (TNV) introduced
a method for hierarchically decomposing an image into



92 J Math Imaging Vis (2011) 40: 82–104

scales. They utilize concepts from interpolation theory to
represent a noisy and blurry image as the sum of “atoms”
uk , where every uk extracts features at a scale finer than for
the previous uk−1. This method acts like an iterative regular-
ization scheme, i.e. up to some iteration index k̄ the method
yields improving reconstruction results with a deterioration
(due to noise influence and ill-conditioning) beyond k̄; see,
e.g., the iteration sequence displayed in column (a) of Fig. 8.
In our context we use the TNV-scheme to improve the ba-
sic MTV-algorithm. This results in a reduction of the num-
ber of iterations until successful termination and in a robust
method with respect to the choice of the initial λ0. We also
mention that while the approach in [33] relies on a scalar
regularization parameter λ, we extend the concept to a spa-
tially varying one.

Considering dyadic scales, the resulting algorithm is as
follows:

(i) Choose λ0 > 0, λ0 ∈ L∞(�) and compute

u0 := arg min
u∈BV (�)

∫

�

|Du| + 1

2

∫

�

λ0(Ku − z)2 dx.

(4.1)

(ii) For j = 0,1,2 . . . set λj = 2j λ0 and vj = z − Kuj .
Then compute

ûj := arg min
u∈BV (�)

∫

�

|Du| + 1

2

∫

�

λj+1(Ku − vj )
2 dx,

uj+1 := uj + ûj . (4.2)

Note that we assume here for simplicity that u0 and ûj , j =
0,1, . . . , are unique. The following results extending those
in [33] can easily be proved. For the sake of completeness
we provide the proofs in Appendix A. For the formulation
of these results we introduce ‖ · ‖∗, the dual of the seminorm∫
�

|Du|, i.e.,

‖u‖∗ := sup∫
� |Dϕ|	=0

∫
�

u ϕ dx
∫
�

|Dϕ| . (4.3)

Thus, we have
∫

�

u ϕ dx ≤ ‖u‖∗
∫

�

|Dϕ|, ∀ϕ ∈ BV (�). (4.4)

The pair (u,ϕ) is called extremal if equality holds in (4.4).
The following theorem characterizes a solution of (1.5) in
terms of ‖ · ‖∗.

Theorem 7

(i) u is a minimizer of (1.5) if and only if
∫

�

u K∗λ(z − Ku)dx = ‖K∗λ(z − Ku)‖∗
∫

�

|Du|

=
∫

�

|Du|. (4.5)

(ii) ‖K∗λz‖∗ ≤ 1 if and only if u = 0 is a minimizer of
(1.5).

(iii) Assume that 1 < ‖K∗λz‖∗ < +∞. Then u is a mini-
mizer of (1.5) if and only if (K∗λ(z − Ku),u) is an
extremal pair and ‖K∗λ(z − Ku)‖∗ = 1.

(iv) If ‖K∗λz‖∗ > 1, then the decomposition (4.1)–(4.2)
yields λ0z ∼= ∑∞

j=0 λ0Kuj and further

∥
∥
∥
∥
∥
K∗λ0

(

z −
k∑

j=0

Kûj

)∥
∥
∥
∥
∥∗

= 1

2k
. (4.6)

In order to extract image features at a finer scale in the
spirit of the above localized version of the TNV technique,
we correspondingly modify the iterative adaption of λ in
(3.17) by setting

(λ̃k+1)i,j := ζ min

(

(λ̃k)i,j + ρ

(√
(S̃ω

k )i,j − σ

)

,L

)

,

(4.7a)

(λk+1)i,j = 1

ω2

∑

(s,t)∈�ω
i,j

(λ̃k+1)s,t , (4.7b)

where ζ ≥ 1 and L is a large positive value to ensure uni-
form boundedness of {λ̃k}; otherwise if λ̃k would become
unbounded (possibly only on a non-empty subset of the dis-
crete �), then the local regularization effect would van-
ish and significant noise would remain. In our numerics
we choose ζ = 2, which comes from the notion of dyadic
scales in the TNV-algorithm presented above, to acceler-
ate the adjustment of λ. In addition, since all images in our
numerical tests have a dynamic range of [0,1], and, thus,
0 < σ < 1, for scaling purposes we replace (S̃ω

k )i,j − σ 2 by√
(S̃ω

k )i,j − σ .
In the next section we propose an algorithm which uses

(4.7) to accelerate the parameter adjustment and, hence, the
image restoration.

5 Spatially Adapted TV-Algorithm

Based on the hierarchical decomposition of Sect. 4 and the
local variance estimators and confidence interval technique
of Sect. 3 we propose the following algorithm.

SA-TV-Algorithm.
1: Initialize u0 = 0 ∈ R

m×m, λ0 = λ̃0 ∈ R
m×m+ and set

k := 0.
2: If k = 0, solve the discrete version of the minimization

problem in (4.1), else compute vk = z−Kuk and solve
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the discrete version of

min
u∈BV (�)

∫

�

|Du| + 1

2

∫

�

λ(Ku − vk)
2 dx

with the discretization of λ equal to λk . Let ûk denote
the corresponding solution.

3: Update uk+1 = uk + ûk .
4: Based on uk+1 and (4.7), update λk+1.
5: Stop, or set k := k + 1 and return to step 2.

A few remarks on the algorithm are in order: (i) We ini-
tialize λ by a relatively small constant, i.e. λ0 = λ̄01 with
λ̄0 > 0 small and 1 ∈ R

m×m the matrix with all entries equal
to 1. Extensive numerical results suggest that with a small
λ̄0 our method is robust with respect to the choice of λ0;
see Sect. 6. (ii) The solution of the TV-problems in step 2
is obtained by a superlinear convergent semismooth Newton
method; see [21] for scalar λ and the following subsection
as well as Appendix B for an extension to the spatially de-
pendent case. The parameters in this method are chosen as
in [21]. (iii) In our numerical practice a 11-by-11 window
turned out to yield reliable results. In order to support our
choice, in Sect. 6 we study the influence of the window size
on the restoration quality. (iv) Similar to the Bregman itera-
tion proposed in [23], we stop the iterative procedure as soon
as the residual ‖z−Kuk‖2 drops below ξσ , where ξ > 1 re-
lates to the image size. For m → ∞ we have ξ → 1.

5.1 Primal-dual Approach to Spatially Adapted Total
Variation

In [21] an infeasible primal-dual algorithm of generalized
Newton-type was proposed for solving (1.5) with a scalar λ.
In the sequel we extend its key features to the case where
λ = λ(x). Thus, the method serves as a solver for the prob-
lems in step 2 of our SA-TV-algorithm.

Rather than operating on the original TV-model (1.5) the
method is based on

min
u∈H 1

0 (�)

μ

2

∫

�

|∇u|22 dx + 1

2

∫

�

λ|Ku − z|2 dx

+
∫

�

|∇u|2 dx, (5.1)

where 0 < ε ≤ λ(x) ≤ λ̄ for almost all x ∈ � and 0 < μ �
λ̄−1. The μ-term serves the purpose of a function space reg-
ularization for a “convenient" dualization in a Hilbert space
setting. Its effect on the restoration results is negligible since
μ � λ̄−1. We point out that for μ → 0 the solution of (5.1)
converges weakly in L2(�) to a solution of (1.5). Moreover,
in our numerics we even use μ = 0.

Applying the Fenchel-Legendre calculus [14] analo-
gously as in [21], the Fenchel-dual of (5.1) reads

sup
�p∈L2(�)

| �p(x)|≤1 a.e. in �

−1

2
|||K∗λz − div �p|||2

H−1 + 1

2

∫

�

λz2 dx, (P0)

where |||v|||2
H−1 = 〈Hμ,Kv, v〉H 1

0 ,H−1 , v ∈ H−1(�) with

Hμ,K = (K∗λK − μ�)−1, � : H 1
0 (�) → H−1(�), and

〈·, ·〉H 1
0 ,H−1 denotes the duality pairing between H 1

0 (�) and

its dual H−1(�). Moreover, L2(�) := (L2(�))2. In order to
avoid the non-uniqueness of the solution of (P0), following
[21] we consider a dual regularization:

sup
�p∈L2(�)

| �p(x)|≤1 a.e. in �

−1

2
|||K∗λz − div �p|||2

H−1

+ 1

2

∫

�

λz2 dx − β

2

∫

�

‖ �p‖2
L2, (P )

where β > 0 is the associated regularization parameter.
In order to study the effect of the β-regularization of the
Fenchel-dual we apply the Fenchel-Legendre calculus once
more and find that the dual of (P ) is given by

min
u∈H 1

0 (�)

μ

2

∫

�

|∇u|22dx

+ 1

2

∫

�

λ|Ku − z|2 dx +
∫

�

�β(∇u)dx, (P ∗)

where for �w ∈ L2(�),

�β( �w)(x) =
{

|w(x)|2 − β
2 if |w(x)|2 ≥ β,

1
2β

|w(x)|22 if |w(x)|2 < β.
(5.2)

Note that �β represents a local smoothing of
∫
�

|∇u|2 dx

in (5.1) to obtain uniqueness of the dual solution �p. In our
numerics, we choose β = 10−3.

The first-order optimality conditions of (P ∗) characterize
the solution ū and �̄p of (P ∗) and (P ), respectively, by

−μ�ū + K∗λKū − div �̄p = K∗λz in H−1(�), (5.3a)

max(β, |∇ū|2) �̄p − ∇ū = 0 in L2(�). (5.3b)

Note that the system (5.3) is non-smooth, i.e. not necessarily
Fréchet-differentiable. The discrete version of this system
can be solved efficiently by a semismooth Newton method;
see Appendix B for the semismooth Newton algorithm and
details on the involved numerical linear algebra. The gener-
alized Newton solver converges globally, i.e. regardless of
its initialization, and locally at a superlinear rate [21].
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Fig. 4 Example 1: Original
images. (a) “Cameraman”,
(b) Part 1 of “Barbara”, (c) Part
2 of “Barbara”

Fig. 5 Example 1: Results of
different methods when
restoring the noisy image
“Cameraman”. (a) Noisy image,
(b) TV-method with [10]
(α = 0.091, PSNR = 27.04,
MSSIM = 0.801), (c)
TV-method (α = 0.07,
PSNR = 27.42,
MSSIM = 0.783), (d)
TV-method (α = 0.085,
PSNR = 27.19,
MSSIM = 0.802), (e) Bregman
iteration (PSNR = 27.34,
MSSIM = 0.809), (f)
TNV-method (PSNR = 26.96,
MSSIM = 0.689), (g) Basic
MTV-algorithm
(PSNR = 26.94,
MSSIM = 0.803), (h) Our
method (PSNR = 27.90,
MSSIM = 0.825)

6 Numerical Results

In this section we provide numerical results to study the
behavior of the SA-TV method with respect to its image
restoration capabilities and its stability with respect to the
choice of the initial λ and ω. Unless otherwise specified we
concentrate on image denoising, i.e., K is the identity ma-
trix, and use the window size ω = 11, as mentioned earlier.
Further, in all of our experiments reported on below the im-
age intensity range is scaled to [0,1].
6.1 Comparison with Other Restoration Techniques

We study the behavior of the SA-TV-method and com-
pare it with the “classical” total variation (TV) method
[26], the Bregman iteration [23], the TNV-method [32],
and the basic MTV-method introduced in Sect. 3.3. While
the first two methods operate with a scalar λ, the TNV-
method yields a genuine hierarchical decomposition. The

performance of these methods is compared quantitatively by
means of the peak signal-to-noise ratio (PSNR) [8], which
is a widely used image quality assessment measure, and the
recently proposed structural similarity measure (MSSIM)
[35], which relates to perceived visual quality better than
PSNR.

Example 1 Our first test examples are displayed in Fig. 4,
where the original images “Cameraman” (256-by-256) and
“Barbara” (512-by-512) are shown. For a study of our
method in the case of texture-like structures we zoom into
certain regions of the “Barbara”-image; see the middle and
right plots. The original images can be found in [1]. In this
example, we consider degraded images which are corrupted
by Gaussian white noise with the noise level σ = 0.1. The
noisy images are shown in Figs. 5, 6, and 7(a).
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Fig. 6 Example 1: Results of
different methods when
restoring part of the noisy image
“Barbara”. (a) Noisy image, (b)
TV-method with [10]
(α = 0.064, PSNR = 22.07,
MSSIM = 0.659), (c)
TV-method (α = 0.04,
PSNR = 22.81,
MSSIM = 0.689), (d)
TV-method (α = 0.045,
PSNR = 22.76,
MSSIM = 0.691), (e) Bregman
iteration (PSNR = 21.34,
MSSIM = 0.688), (f)
TNV-method (PSNR = 22.65,
MSSIM = 0.691), (g) Basic
MTV-algorithm
(PSNR = 22.21,
MSSIM = 0.675), (h) Our
method (PSNR = 23.32,
MSSIM = 0.767)

Fig. 7 Example 1: Results of
different methods when
restoring part of the noisy image
“Barbara”. (a) Noisy image,
(b) TV-method with [10]
(α = 0.088, PSNR = 25.32,
MSSIM = 0.723),
(c) TV-method (α = 0.06,
PSNR = 25.97,
MSSIM = 0.734),
(d) TV-method (α = 0.07,
PSNR = 25.85,
MSSIM = 0.742), (e) Bregman
iteration (PSNR = 25.23,
MSSIM = 0.747),
(f) TNV-method
(PSNR = 25.92,
MSSIM = 0.716), (g) Basic
MTV-algorithm
(PSNR = 25.43,
MSSIM = 0.732), (h) Our
method (PSNR = 26.45,
MSSIM = 0.785)
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We start by comparing the SA-TV method with a few
other methods listed in the beginning of this section. The re-
sults are shown in Figs. 5, 6, and 7. For the TV-method we
show the restored image with α chosen such that the sec-
ond constraint in (1.2) is satisfied; see [10]. In addition, af-
ter many experiments with different α-values in the model
(1.4), the one with the best PSNR and the one with the best
MSSIM are also presented here. Comparing these values we
find that the results with the largest MSSIM values match
the human visual system better than the one with the largest
PSNR. The Bregman iteration is often used for contrast en-
hancement, but it is also an excellent method for noise re-
moval. Therefore, we also list its results here for compari-
son. For a fair comparison, we use the same initial choices
λ0 = 2.5 or α0 = 0.4 and the same stopping rule for the
Bregman iteration, the TNV-method, the basic MTV-method
of Sect. 3.3 and the SA-TV-method of Sect. 5 with μ = 0
and β = 10−3, i.e, the respective algorithm is stopped as
soon as the residual ‖z−uk‖2 drops below the noise level σ .

From Figs. 5, 6, and 7 we find that our SA-TV-method
performs best both visually and quantitatively. Note that in
the images restored by the TV-method, we observe the usual
result that small α preserves details, but at the same time
some noticeable noise remains; otherwise, if α is large, the
details are overregularized. Although the Bregman iteration
removes most of the noise, it still gives more heterogeneous
results; see in particular Fig. 5. Since the TNV-method per-
forms a hierarchical image decomposition, image details are
added back in every iteration, but at the same time some
noise is also added back; see the background of Figs. 5, 6,
and 7. For the images restored by the basic MTV-method we
note that details and features at a larger scale are not as well
resolved as in case of the TNV- or our new SA-TV method.
This is due to a slower update of λ. In fact, when initial-
izing by a rather small λ0, our stopping rule involving the
global variance of the current reconstruction terminates the
iteration even before λ becomes sufficiently large in detail
regions for recovering these regions sufficiently accurately;
see, e.g., the camera in Fig. 5. Further, large scale features
appear somewhat oversmoothed; see, e.g., the face of Bar-
bara in Fig. 7. At the cost of additional iterations, a localized
stopping rule improves the reconstructions. Note, however,
that the basic MTV based recovery of details and the recon-
struction of homogeneous regions still favorably compares
with the results by the TV-method. The SA-TV-method, on
the other hand, suppresses noise successfully while preserv-
ing significantly more details. For instance, the sky in Fig. 5
and the arms of Barbara in Fig. 7 are smooth and the de-
tails of the camera in Fig. 5 and the features on the scarf in
Figs. 6 and 7 are preserved clearly without being degraded
by noise. With respect to PSNR and MSSIM, we also find
quantitatively that our method gives the best restoration re-
sults. On the other hand, a very close inspection shows, e.g.,
a slight halo around the camera and still some heterogene-

Table 1 CPU-time in seconds and the number of iterations by differ-
ent methods

“Cameraman” “Barbara”

CPU-Time k CPU-Time k

Bregman iteration 94.19 4 548.68 4

TNV-method 78.66 4 422.02 4

Basic MTV-method 213.38 22 1620.4 37

SA-TV-method 60.26 3 364.24 3

ity in the lawn area of Fig. 5. Related heterogeneous effects
can be found in Figs. 6 and 7. One might hope that these
effects may get removed by an anisotropic smoothing of λ

or by adaptive local windows, which opens up interesting
research perspectives.

6.1.1 Computational Efficiency

In the SA-TV-method, we utilize the hierarchical decompo-
sition concept of the TNV-method. As a result, our adaptive
choice of λ not only improves the TNV-method with respect
to its restoration capability (see Figs. 5, 6, and 7), but it also
reduces the number of iterations and, hence, the CPU-time
until successful termination. In Fig. 8, the restored image
and the corresponding residual in each iteration of the TNV-
and the SA-TV-method are shown, respectively. In the first
iteration, since we utilize the same initial value of λ0 for
both algorithms, both restoration results and their pertinent
residuals are identical; compare the first row of Fig. 8. We
note that the residual contains most of the details. In the next
iteration, for the TNV-method we have λ1 = 2λ0 in order to
extract features at a finer scale. The SA-TV-method, how-
ever, is based on (4.7) and the associated λ1 is larger than
2λ0 in image regions corresponding to details. Thus, these
details are extracted better already in the second iteration;
see the camera and the tripod in the second row of Fig. 8 (c)
and (d). By similar reasons, in the third iteration more de-
tails are added back by the SA-TV-method than by the TNV-
method; see, e.g., the buildings in the background. Then,
the SA-TV-method satisfies the stopping condition first be-
cause it has extracted the various image features much faster.
Furthermore, when the TNV-method satisfies the stopping
condition, the result not only includes more details but also
significant noise. For this aspect observe the background re-
gions.

For comparing the computational time, in Table 1 we list
the CPU-times consumed by the iterative methods in our
comparison. All simulations are run in Matlab 7.5 (R2007b)
on a PC equipped with P4 3.0 GHz CPU and 3G RAM mem-
ory. Since for all methods most of the computations within
each iteration are spent for solving a total variation type
problem, due to requiring the least number of iterations the
SA-TV-method also spends least CPU-time. Moreover, we
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Fig. 8 Example 1: Comparison
of iterations of the TNV-method
and the SA-TV-method when
restoring the noisy image
“Cameraman”. (a) Result of
TNV-method, (b) Residual of
TNV-method, (c) Result of
SA-TV-method, (d) Residual of
SA-TV-method

Fig. 9 Example 1: PSNR and MSSIM for images restored by our method for different initial λ̄0

find that with the original adaptive selection of λ in (3.17)
the basic MTV-method needs significantly more iterations
to meet the stopping condition.

6.1.2 Dependence on λ̄0

Concerning the influence of the initial parameter λ̄0 on the
restoration behavior we observe that our method is rather

stable with respect to λ̄0. In Fig. 9, we plot the PSNR- and

MSSIM-values for the images restored by our method with

λ̄0 varying from 0.1 to 3. Since λ controls the trade-off be-

tween a good data fit and the regularization coming from the

TV-term, it has large effect on the variance of the residual

‖z−uk‖2. This can be seen from the left plot in Fig. 9 where

we also specify the number of iterations for each PSNR-
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Fig. 10 Example 1: Images
restored by our method with
different λ̄0. (a) λ̄0 = 0.1, (b)
λ̄0 = 0.5, (c) λ̄0 = 1, (d) λ̄0 = 2

Fig. 11 Example 1: PSNR and MSSIM for results obtained by our method with different ω

Fig. 12 Example 1: Restored
images by our method with
different ω. (a) ω = 3, (b)
ω = 7, (c) ω = 13, (d) ω = 17

value. From the plots we can see that PSNR and MSSIM
are rather stable. In order to illustrate the influence on the
restored images, in Fig. 10 we show the results of part 1 of
“Barbara” for several values of λ̄0.

6.1.3 Dependence on ω

We also test our method for different values of the win-
dow size ω varying from 3 to 23. Figure 11 shows the plots
of the PSNR- and MSSIM-values of the denoising results
for the same denoising problems as in Figs. 5 and 7 with
λ̄0 = 1. Except for very small window size, we observe a
remarkable stability with respect to ω. This can also be seen
from the restored images in Fig. 12. Too small window sizes
(here ω = 3 and 5) yield comparatively small PSNR and
MSSIM values, which is a consequence of the small sam-
ple sizes. Figure 12 shows that with ω = 3 some noise per-
sists, whereas sufficiently large ω reduces noise effects and

recovers details; compare the rather constant graphs for the
PSNR- and MSSIM values for ω ≥ 11. If, however, ω be-
comes too large, then the regularization parameter choice
becomes rather global than local which compromises image
details.

Example 2 (Medical image restoration) In Fig. 13 we show
the results obtained by the TV-method (c), the Bregman iter-
ation (d), the TNV-method (e) and our algorithm (f), respec-
tively, when denoising the magnetic resonance image of a
rabbit heart at a resolution of 1024 × 1024 pixels (original
(a) with (b) an enlarged part). For the TV-method we choose
α = 1/λ based on the algorithm in [10]. In the other itera-
tion methods, we estimate the noise level as the variance in
a homogeneous region, and set the parameter λ̄0 = 1. For a
better inspection of the result, we enlarge a part of the image
in Fig. 13. We note that the classical TV-method is outper-
formed by the Bregman iteration, the TNV-method and our
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Fig. 13 Example 2: Results
when restoring the medical
image of rabbit heart:
(a) Original image, (b) Enlarged
original part, (c) TV-method,
(d) Bregman iteration (k = 20),
(e) TNV-method (k = 7),
(f) SA-TV-method (k = 3)

Fig. 14 Example 3: Results of different methods when restoring the
blurred and noisy image “Barbara”: (a) Original image, (b) Blurred
noisy image, (c) TV-method (PSNR = 28.06, MSSIM = 0.823),
(d) Bregman iteration (PSNR = 28.27, MSSIM = 0.839, k = 76),
(e) TNV-method (PSNR = 29.15, MSSIM = 0.865, k = 9), (f) Our
method (PSNR = 29.68, MSSIM = 0.883, k = 4)

method, with the Bregman iteration missing some of the de-
tails; see, e.g., the marked square in the lower left corner.
In this highlighted region we find that in subplot (c) many
details (fiber directions) are lost. In subplot (d) this effect
is less pronounced, but nevertheless, when compared to (e)
and (f), the quality of the restored details is significantly re-
duced. While the TNV-method and our method give visually
similar results for this test image we observe that our method
requires the smallest number of iterations (also when com-
pared with the Bregman iteration).

Example 3 (Simultaneous deblurring and denoising) Fi-
nally, we illustrate the restoration ability of our method for
noisy blurred images. The blurring is due to a Gaussian con-
volution with a 9 × 9 window and a standard deviation of 1.
Further we have Gaussian white noise with σ = 0.02. Fig-
ure 14 depicts a part of the noisy blurred “Barbara” im-
age and the restoration results. For the TV-method we use
α = 1/λ according to [10]. For the other methods we set
λ̄0 = 1. Comparing the result obtained by our method with
the others, we find that our method preserves details bet-
ter; see, e.g., the features on the scarf. Based on PSNR and
MSSIM, our method also outperforms the other methods.
In addition, although we use the same value of λ̄0 for the
Bregman iteration as well as the TNV-method and our al-
gorithm, our method needs the smallest number of itera-
tions. In this respect, we recall that our method intertwines
the TNV-hierarchical decomposition concept [33], but with
a spatially varying λ, with a confidence interval based λ-
update. This fact is responsible for extracting details faster
and, thus, resulting in a smaller iteration number than the
pure TNV-method.

6.2 Stability of Our Regularization Parameter Choice Rule

Since the performance of multi-scale total variation is
mainly influenced by the selection of the parameter λ, in
this section we discuss the new spatially adaptive selection
of λ in our method in case of various noise levels.

Example 4 We consider a 300-by-300 test image as shown
in Fig. 15(a). The third row of Fig. 15 depicts the final val-
ues of the parameter λ upon termination of our method with
λ̄0 = 0.2. In all cases λ is large in detail regions and small in



100 J Math Imaging Vis (2011) 40: 82–104

Fig. 15 Example 4: Results of the SA-TV-method for different noise
levels σ (row 1: noisy images; row 2: restored images; row 3: final
values of λ). (a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.3

the homogeneous background. Moreover, small scale fea-
tures lead to large λ. When comparing the restoration re-
sults of Fig. 15 (second row) for different noise levels, i.e.,
σ = 0.1, 0.2, and 0.3, respectively, we find that even for
rather high noise level our method still is able to distinguish
most of the detail regions and assigns automatically a large
value to λ in these regions. Thus, our parameter choice rule
appears to be robust with respect to noise.

In Fig. 3 we compared our upper bound for the local vari-
ance estimator with the bound in [15]. Here we continue the
investigation of the stability of our upper bound by studying
its behavior when over- or underestimating the variance σ 2.
Figure 16 depicts the restoration results for underestimated
(see the plots (a) and (b)) and for overestimated variance (see

the plots (c) and (d)). We observe that an underestimated
variance tightens the upper bound resulting in an overesti-
mation of λ and, hence, too little regularization such that
noise appears in the restoration; see plot (a) where the esti-
mated σ is 0.08, whereas the true one is 0.1. On the other
hand, if σ is overestimated, λ is underestimated and too
much regularization takes place. The latter adversely affects
the recovery of image details; compare plot (d) of Fig. 16.
Obviously, the quality of the reconstruction depends on the
quality of the estimate of σ , where overestimation appears
less critical than underestimation.

In Fig. 17 we show the final values of λ obtained by our
choice rule for the examples 1 to 3. Again in detail regions λ

is large in order to preserve the details, and it is small in the
homogeneous regions to remove noise. Furthermore, for the
noisy blurred image our method is able to distinguish most
of the detail regions properly; see Fig. 17(e).

7 Conclusions

A spatially adapted regularization parameter λ in the ROF-
model is justified by considering an equivalent minimiza-
tion problem subject to pointwise constraints. The introduc-
tion of a local variance estimator of the residual image turns
out to be an accurate instrument for updating λ within an
iterative procedure. Even though the update of the regular-
ization parameter can be done gradually by using the lo-
cal variance estimator only, combining the updating process
with the hierarchical decomposition approach proposed by
Tadmor, Nezar and Vese considerably reduces the number
of iterations for adjusting λ according to the image scales
and it yields even better results with respect to the recovery
of image details when compared to the TNV-method as a
stand-alone technique. Further, assuming that the noise vari-
ance σ 2 is known, the present algorithm is completely au-
tomatized, i.e., there is no necessity of tuning regularization
parameters. The overall method combines the hierarchical
decomposition based λ-adjustment scheme with an inexact
semismooth Newton solver relying on Fenchel duality for

Fig. 16 Example 4: Results for restoring noisy image “Cameraman”
with σ = 0.1 by SA-TV-method with inaccurate noise level estima-
tion σ̃ . (a) With σ̃ = 0.08 (PSNR = 27.61, MSSIM = 0.793, k = 3),

(b) With σ̃ = 0.09 (PSNR = 27.93, MSSIM = 0.824, k = 3), (c) With
σ̃ = 0.11 (PSNR = 25.90, MSSIM = 0.766, k = 3), (d) With σ̃ = 0.12
(PSNR = 25.76, MSSIM = 0.763, k = 3)
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Fig. 17 Examples 1–3: Final
values of λ by our parameter
choice rule for (a)–(c)
Example 1, (d) Example 2,
(e) Example 3

total variation regularized subproblems. The numerical re-
sults show that the new method outperforms several popular
TV-based methods with respect to both noise removal and
detail preservation.
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Appendix A: Proofs of Sect. 4

We provide a proof of Theorem 7 which extends the results
of [33].

Proof (i) Let ε > 0 be sufficiently small. Then, if u is a min-
imizer of (1.5), we have for all ϕ ∈ BV (�)

∫

�

|D(u + εϕ)| + 1

2

∫

�

λ(K(u + εϕ) − z)2 dx

≥
∫

�

|Du| + 1

2

∫

�

λ(Ku − z)2 dx, (A.1)

∫

�

|D(u + εϕ)| + ε

∫

�

λ(Kϕ)(Ku − z) dx

+ ε2

2

∫

�

λ(Kϕ)2 dx ≥
∫

�

|Du|, (A.2)

∫

�

|Du| + ε

∫

�

|Dϕ| + ε

∫

�

λ(Kϕ)(Ku − z) dx

+ ε2

2

∫

�

λ(Kϕ)2 dx ≥
∫

�

|Du|. (A.3)

Dividing (A.3) by ε > 0 and letting ε → 0+ we get
∫

�

|Dϕ| ≥
∫

�

λ(Kϕ)(z − Ku)dx =
∫

�

ϕK∗λ(z − Ku)dx.

This yields

sup∫
� |Dϕ|	=0

∫
�

ϕK∗λ(z − Ku)dx
∫
�

|Dϕ| ≤ 1

and further ‖K∗λ(z−Ku)‖∗ ≤ 1. For the reverse inequality
set ϕ = u and −1 < ε < 0. Then starting from (A.2) we have

(1 + ε)

∫

�

|Du| + ε2

2

∫

�

λ(Ku)2 dx

≥
∫

�

|Du| + ε

∫

�

λ(Ku)(z − Ku)dx.

Dividing by ε < 0 and letting ε → 0− we obtain
∫

�

|Du| ≤
∫

�

uK∗λ(z − Ku)dx

≤ ‖K∗λ(z − Ku)‖∗
∫

�

|Du| ≤
∫

�

|Du|.

For the sufficiency, we note that
∫

�

λ(z − K(u + ϕ))2 dx

=
∫

�

λ(z − Ku)2 − 2
∫

�

λ(z − Ku)(K(u + ϕ)) dx

+ 2
∫

�

λ(z − Ku)(Ku)dx +
∫

�

λ(Kϕ)2 dx.

The second term of the right hand side above is estimated by
∫

�

K∗λ(z − Ku)(u + ϕ)dx
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≤ ‖K∗λ(z − Ku)‖∗
∫

�

|D(u + ϕ)| ≤
∫

�

|D(u + ϕ)|,

and because (K∗λ(z − Ku),u) is an extremal pair, the third
term implies
∫

�

K∗λ(z − Ku)udx =
∫

�

|Du|.

Hence, we have
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|D(u + ϕ)| + 1

2

∫

�

λ(z − K(u + ϕ))2 dx

≥
∫

�

|D(u + ϕ)| + 1

2

∫

�

λ(z − Ku)2 dx

−
∫

�

|D(u + ϕ)| +
∫

�

|Du| + 1

2

∫

�

λ(Kϕ)2 dx

≥ 1

2

∫

�

λ(z − Ku)2 +
∫

�

|Du|

which yields that u is a minimizer.

(ii) Let ‖K∗λz‖∗ ≤ 1. Given the characterization (4.5), we
obtain
∫

�

|Du| =
∫

�

uK∗λzdx −
∫

�

uK∗λKu

≤ ‖K∗λz‖∗
∫

�

|Du| −
∫

�

(
√

λKu)2 dx

≤
∫

�

|Du| −
∫

�

(
√

λKu)2 dx.

Hence, Ku = 0 and
∫

�

|Du| + 1

2

∫

�

λ(Ku − z)2 dx =
∫

�

|Du| + 1

2

∫

�

λz2 dx.

Therefore, u must be a constant. Based on the properties of
K , we have u ≡ 0.

Now, if u = 0 is a minimizer of (1.5), then for any ϕ ∈
BV (�) we have

1

2

∫

�

λz2 dx ≤
∫

�

|Dϕ| + 1

2

∫

�

λ(Kϕ − z)2 dx

and further
∫

�

λzKϕ dx ≤
∫

�

|Dϕ| + 1

2

∫

�

(
√

λKϕ)2 dx.

From a rescaling by setting ϕ �→ εϕ, we obtain

ε

∫

�

λzKϕ dx ≤ ε

∫

�

|Dϕ| + ε2

2

∫

�

(
√

λKϕ)2 dx.

Next we divide by ε and let ε → 0+, which results in
∫

�

λzKϕ ≤
∫

�

|Dϕ|

for all ϕ ∈ BV (�). We conclude that ‖K∗λz‖∗ ≤ 1.
(iii) Given the result (4.5) we have to show that

∫
�

|Du| does
not vanish.

Let us suppose it does vanish. Then u is a constant. For
any constant c and any ϕ ∈ BV (�) with

∫
�

|Dϕ|dx > 0 we
have
∫
�

K∗λz(ϕ + c) dx
∫
�

|D(ϕ + c)| =
∫
�

K∗λzϕ dx
∫
�

|Dϕ| + c

∫
�

K∗λzdx
∫
�

|Dϕ| .

Based on the assumption ‖K∗λz‖∗ < +∞ and (4.3), this
implies

∫
�

K∗λzc dx = 0 for all constants c. Thus,

1

2

∫

�

λ(Ku − z)2 dx = 1

2

∫

�

λz2 dx + 1

2

∫

�

(
√

λKu)2 dx

is minimized when Ku = 0. From (ii) we conclude
‖K∗λz‖∗ ≤ 1, which yields a contradiction to our assump-
tion.

(iv) For u0 we have ‖K∗λ0(z − Ku0)‖∗ = 1, and for ûk

there holds

‖K∗λk+1(vk − Kûk)‖∗ = 1,

or, with λk+1 = 2λk , we have

‖K∗λ0(z − Kuk − Kûk)‖∗
= ‖K∗λ0(z − Kuk+1)‖∗

=
∥
∥
∥
∥K∗λ0

(

z −
k∑

j=0

Kûj

)∥
∥
∥
∥∗

= 1

2k

for k = 0,1,2, . . . . �

Appendix B: Semismooth Newton Method for
Solving (5.3)

We explain our semismooth Newton solver by means of the
discrete version of (5.3) and vector-valued variables. For this
purpose let u� ∈ R

M , p� ∈ R
2M , λ� ∈ R

M , for some M ∈ N

which depends on the image size m × m, denote the dis-
crete image intensity, dual variable and spatially dependent
λ, respectively. The subscript � refers to the �-th element of
a sequence generated by the semismooth Newton solver in-
troduced below. Further, let z ∈ R

M denote the discrete data
vector. We define the discrete gradient operator ∇ ∈ R

2M×M

and the discrete operator Bμ,λ = −μ� + K�D(λ)K with
�,K�D(λ)K ∈ R

M×M and K� the transpose of K ∈
R

M×M . Here D(λ) = diag(λ1, . . . , λM). We use m� =
max(βe,�(∇u�)) ∈ R

2M , where e = (1,1, . . . ,1)� ∈ R
2M

and (�(v))i = (�(v))i+M = |((vx)i , (vy)i)
�|2 =√

|(vx)i |2 + |(vy)i |2 (1 ≤ i ≤ M) for v ∈ R
2M = (v�

x , v�
y )�
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with vx, vy ∈ R
M . Moreover, χA�+1 = D(t�) ∈ R

2M×2M

with

(t�)i =
{

1, if (�(∇u�))i ≥ β,

0, else,

and N denotes the Jacobian of the function �, i.e.

N (v) = (D(�(v)))−1
(

D(vx) D(vy)

D(vx) D(vy)

)

.

The discrete version of (5.3) at (u�,p�) is given by

Bμ,λu + ∇�p = K�D(λ)z, (B.1a)

D(m�)p − ∇u = 0. (B.1b)

Applying a generalized Newton step to (B.1) at (u�,p�)

yields
(

Bμ,λ ∇�

(−D(e) + χA�+1D(p�)N (∇u�))∇ D(m�)

)(
δu

δp

)

=
(−Bμ,λu� − ∇�p� + K�D(λ)z

∇u� − D(m�)p�

)

, (B.2)

where δu ∈ R
M and δp ∈ R

2M denote the update directions.
Since D(m�) is invertible, we eliminate δp from (B.2)

and obtain the reduced system

H�δu = f�, (B.3)

where

H� = Bμ,λ + ∇�D(m�)
−1[D(e) − χA�+1D(p�)N (∇u�)

]∇,

f� = −Bμ,λu� + K�D(λ�)z − ∇�D(m�)
−1∇u�.

We note that δu is a decent direction for the discrete objec-
tive in (5.1) if H� is positive definite. Similar to [21, Cor. 3.2]
the positive definiteness is guaranteed under the following
condition

�(p�)i ≤ 1 and (b�,i + c�,i)
2 ≤ 4a�,id�,i

for all i = 1, . . . ,M, (C)

where

a�,i =1 − (�(∇u�))
−1
i (p�)i(∇xu�)i,

b�,i = − (�(∇u�))
−1
i (p�)i(∇yu�)i,

c�,i = − (�(∇u�))
−1
i (p�)i+M(∇xu�)i,

d�,i =1 − (�(∇u�))
−1
i (p�)i+M(∇yu�)i .

In the following theorem λmin(·) refers to the smallest eigen-
value of a matrix.

Theorem 8 Let the condition (C) hold for all i ∈ {1, . . . ,M}
and � ∈ N. Then, for all � ∈ N, the matrix H� is positive
definite, and λmin(H�) ≥ λmin(Bμ,λ) > 0. Moreover, the se-
quence {H−1

� }�∈N is uniformly bounded.

In order to satisfy (C) in our algorithm we proceed as fol-
lows: Replace ((p�)i, (p�)i+M) by max(1, �(p�)i)

−1((p�)i ,
(p�)i+M) =: ((p̂�)i , (p̂�)i+M) and check whether (b�,i +
c�,i)

2 ≤ 4a�,id�,i is satisfied by ((p̂�)i , (p̂�)i+M). If this is
not the case, then b�,i and c�,i are replaced by ν�,ib�,i and
ν�,ick,i with ν�,i = 2

√
a�,id�,i/|b�,i + c�,i |; otherwise b�,i

and c�,i are kept. After these modification, we obtain a pos-
itive definite matrix H+

� which replaces H� in (B.3). It can
be shown that H+

� → H� as u� converges to the solution of
the discrete version of (5.1).

The above considerations result in the following semi-
smooth Newton solver.

Semismooth Newton for step 2 of the SA-TV-algorithm.
1: Initialize (u0,p0) ∈ R

M × R
2M and set � := 0.

2: Estimate the active sets, i.e., determine χA�+1 ∈
R

2M×2M .
3: If the condition (C) is not satisfied, then compute H+

� ;
otherwise set H+

� := H�.
4: Solve H+

� δu = f� for δu and let δu� denote the solu-
tion.

5: Use δu� to compute δp� by means of the second equa-
tion of (B.2).

6: Update u�+1 := u� + δu�, p�+1 := p� + δp�.
7: Stop; or set � := � + 1 and return to step 2.

Similar as in [21] it can be shown that this algorithm con-
verges at a superlinear rate provided that u0 is sufficiently
close to the solution of the discrete version of (5.1). More-
over, the algorithm may be equipped with a line search or
damping procedure. In this case, in addition to the fast local
convergence the method converges globally, i.e., regardless
of the initial choice u0. For details on the globalization we
refer to [21].

Finally we note that the system in step 4 of the above
algorithm is solved iteratively by the BICGSTAB-method
[28]. We further point out that we use an inexact New-
ton solver, i.e., the stopping tolerances for the BICGSTAB-
solver become more and more stringent as we approach the
solution.

References

1. USC-SIPI image database. University of Southern California.
http://sipi.usc.edu/services/database/Database.html

2. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty
methods for ill-posed problems. Inverse Probl. 10, 1217–1229
(1994)

http://sipi.usc.edu/services/database/Database.html


104 J Math Imaging Vis (2011) 40: 82–104

3. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based
restoration model with local constraints. J. Sci. Comput. 34(3),
209–236 (2008)

4. Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice
Hall, New York (1977)

5. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in
Sobolev and BV Spaces. SIAM, Philadelphia (2005)

6. Aubert, G., Kornprobst, P.: Mathematical Problems in Image
Processing. Partial Differential Equations and the Calculus of
Variations. Springer, New York (2002)

7. Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based im-
age restoration with local constraints. J. Sci. Comput. 19, 95–122
(2003)

8. Bovik, A.: Handbook of Image and Video Processing. Academic
Press, San Diego (2000)

9. Buades, A., Coll, B., Morel, J.M.: A review of image denoising
algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–
530 (2005)

10. Chambolle, A.: An algorithm for total variation minimization and
application. J. Math. Imaging Vis. 20, 89–97 (2004)

11. Chambolle, A., Lions, P.-L.: Image recovery via total variation
minimization and related problems. Numer. Math. 76, 167–188
(1997)

12. Chang, Q., Chern, I.-L.: Acceleration methods for total variation-
based image denoising. SIAM J. Appl. Math. 25, 982–994 (2003)

13. Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for
total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791
(1997)

14. Ekeland, I., Témam, R.: Convex Analysis and Variational Prob-
lems. Classics Appl. Math., vol. 28. SIAM, Philadelphia (1999)

15. Facciolo, G., Almansa, A., Aujol, J.-F., Caselles, V.: Irregular to
regular sampling, denoising and deconvolution. Multiscale Model.
Simul. 7(4), 1574–1608 (2009)

16. Galatsanos, N.P., Ketsaggelos, A.K.: Methods for choosing the
regularization parameter and estimating the noise variance in im-
age restoration and their relation. IEEE Trans. Image Process. 1,
322–336 (1992)

17. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational
denoising using an adaptive fidelity term. In: Proceeding of the
IEEE Workshop on Variational, Geometric and Level Set Methods
in Computer Vision, Nice, France, pp. 137–144 (2003)

18. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation.
Birkhäuser, Boston (1984)

19. Gumbel, E.J.: Les valeurs extrêmes des distributions statistiques.
Ann. Inst. Henri Poincaré 5(2), 115–158 (1935)

20. Hintermüller, M., Kunisch, K.: Total bounded variation regular-
ization as bilaterally constrained optimization problem. SIAM J.
Appl. Math. 64, 1311–1333 (2004)

21. Hintermüller, M., Stadler, G.: An infeasible primal-dual algo-
rithm for total bounded variation-based inf-convolution-type im-
age restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

22. Mood, A.: Introduction to the Theory of Statistics. McGraw-Hill,
New York (1974)

23. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative
regularization method for total variation-based image restoration.
Multiscale Model. Simul. 4, 460–489 (2005)

24. Papoulis, A.: Probability, Random Variables, Stochastic
Processes. McGraw-Hill, New York (1991)

25. Rudin, L.: MTV-multiscale total variation principle for a PDE-
based solution to nonsmooth ill-posed problem. Technical report,
Cognitech, Inc. Talk presented at the Workshop on Mathematical
Methods in Computer Vision, University of Minnesota, 1995

26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based
noise removal algorithms. Physica D 60, 259–268 (1992)

27. Rudin, W.: Functional Analysis. TATA McGraw-Hill Publishing
Company LTD., Noida (1974)

28. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn.
SIAM, Philadelphia (2003)

29. Strong, D., Aujol, J.-F., Chan, T.: Scale recognition, regularization
parameter selection, and Meyer’s G norm in total variation regu-
larization. Technical report, UCLA, 2005

30. Strong, D., Chan, T.: Spatially and scale adaptive total variation
based regularization and anisotropic diffusion in image process-
ing. Technical report, UCLA, 1996

31. Strong, D., Chan, T.: Edge-preserving and scale-dependent prop-
erties of total variation regularization. Inverse Probl. 19, 165–187
(2003)

32. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image represen-
tation using hierarchical (BV,L2) decompositions. Multiscale
Model. Simul. 2, 554–579 (2004)

33. Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decom-
position of images with applications to deblurring, denoising and
segmentation. Commun. Math. Sci. 6, 1–26 (2008)

34. Vogel, C.R.: Computational Methods for Inverse Problems. Fron-
tiers Appl. Math., vol. 23. SIAM, Philadelphia (2002)

35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image
quality assessment: From error visibility to structural similarity.
IEEE Trans. Image Process. 13, 600–612 (2004)


	Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration
	Abstract
	Introduction
	Spatially Adapted Regularization
	Existence of a Solution
	First-order Optimality Characterization

	Spatial Adaptation by Local Variance Estimators
	Local Variance Estimator
	Upper Bound for the Local Variance
	Distribution of the Maximum of N Random Variables
	Confidence Interval
	Window Size

	Selection of lambda

	A Hierarchical Decomposition with Spatially Dependent lambda
	Spatially Adapted TV-Algorithm
	Primal-dual Approach to Spatially Adapted Total Variation

	Numerical Results
	Comparison with Other Restoration Techniques
	Computational Efficiency
	Dependence on lambda0
	Dependence on omega

	Stability of Our Regularization Parameter Choice Rule

	Conclusions
	Acknowledgements
	Appendix A: Proofs of Sect. 4
	Appendix B: Semismooth Newton Method for Solving (5.3)
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


